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A NOTE ON BOOTSTRAPPING THE SAMPLE MEDIAN
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Efron (1979, 1982), in his treatment of the bootstrap, discusses its use
for estimation of the asymptotic variance of the sample median, in the
sampling situation of independent and identically distributed random vari-

" ables with common distribution function F having a positive derivative
continuous in a neighborhood of the true median u. The natural conjecture
that the bootstrap variance estimator converges almost surely to the asymp-
totic variance is shown by an example to be false unless a tail condition is
imposed on F. We prove that such strong convergence does hold under the
fairly nonrestrictive condition that E[| X*] <  for some o > 0.

1. Introduction and notation. Throughout this paper we consider observ-
ing X;, X5, -+, X,, a random sample from a univariate distribution with
distribution function F having a positive derivative f continuous in a neighbor-
hood of its median u = inf{t | F(t) = %}. Let F,(t) = Y&, I(X; < t)/n for all real
t be the ordinary empirical distribution function. Define the sample median as
m, = inf{t| F,(t) = %}. Under the conditions stated above (and even slight
weakenings thereof) we have that

(11) ‘/—ﬁ(mn - ﬂ) - N(O’ 02)’
where o2 = 1/(4f2(w)).

Two methods in common use for the nonparametric estimation of standard
errors are the jackknife (see Miller, 1974) and the bootstrap (see Efron, 1979,
1982). Even under the smoothness conditions stated above, it can be shown that
the jackknife estimator of ¢* has the undesirable property of converging in law
(along a sequence of even sample sizes) to a random variable which has the
distribution of (1/4f2(u))(W/2)?, where W has a chi-squared distribution with 2
degrees of freedom. The fact that the jackknife fails so dramatically in this
situation has been viewed as a kind of “smoking gun” for the bootstrap estimator
of variance, which has been presumed to perform satisfactorily in this problem.

The bootstrap estimator of the asymptotic variance of Z, = Vn(m, — i) may
be motivated as follows. (See Efron, 1982, page 27, for a more detailed explana-
tion.) Compute theoretically the variance of Z* = vn(m¥ — m,), where m? is
the median of a random sample of size n drawn with replacement from the
original sample X, ---, X, and the variance is computed conditional on the
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observed values of X, - -+, X,. A simple calculation shows this to be
o5 = n{Xk pa(D)Y? = (T /1 pa(j) Y;)%.
= Y21 Pa(){VR(Yi = ma)2 = (Zf1 pa(i) V(Y; — ma))?,

where Y, is the ith order statistic of X, - -+, X, (we omit the second subscript
indexing the sample size for notational compactness), and

pa(i) = X358 [Q‘,.(%) - b,,,(i)] , for i=2

1
1-— Ej;(l) bj,n<;) for i=1

where b, ,(u) = (Mu’/(1 — w)"7, and a = [n/2] + 1.
Bickel and Freedman (1981) (see also Theorem 2 of Singh, 1981) have shown
the following:

LEMMA 1. (Their Proposition 5.1). Suppose F has a unique median u and F
has a derivative f positive and continuous in a neighborhood of u. Then along
almost all sample sequences X,, X,, ---, the conditional law of s/ﬁ(mﬁ - m,),
given X, - - -, X, converges weakly to N(0, %), with ¢ = 1/(4f*(u)) as above.

It is thus natural to wonder whether 62 — o2 almost surely, or at least in

probability. Such is not the case, however, without further conditions.

ExAMPLE. Let F(x) be such that F(x) = 1 — F(— x), with derivative F’ = f
continuous and positive in a neighborhood of 0, but with F(x) = 1 — (4(x))™,
for x > C, for some large positive C, where #(x) = log log x if x > e, and 4(x) =
1, otherwise. Then, 62 — o almost surely.

The following lemma is helpful.

LEMMA 2. Let U,, Uy, - - - be such that
(a) {U,}n=1 is tight, and
(b) E[U%] — o, but E[U%] < forall n.
Then ‘
Var(U,) — o.
PrOOF. Assume there exists an infinite subsequence n, <n,<ns; < --. such

that Var(U, ) < B < o for all i. But then, since Var(U,,) = E|U}] = (E[U,])?,
and E[U?] — », we must have that | E[U, ]| — . Also, for any K > 1,

P[| U, — E[U,]| > K¥B] < 1/K?,
since B = Var(U,,). Since E(U,) — o, pick j such that | E[U,]| > 3K VB for
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all i = j. Therefore,

P{U, € [- 2KVB, 2KVB]} < 1/K*
for all i = j. But K was arbitrarily large, and the above thus contradicts tightness
of the {U,}. Therefore, Var(U,) — .

Using this lemma, we thus need only show that E [n(m} — m,)?] — o almost
surely (a.s.), where E refers to expectation over the conditional law of m}, given
X, Xy -+ X,.Let Yy, Y, ... Y, denote the order statistics of X;, X, -+ X,.
Since Y, can appear at each of the second stage draws with a chance (1/n)", it
follows that

E [n(m} — m,)?] = n™"" (Y, — m,)>

The population median has been assumed to be zero; therefore m, — 0 a.s. Thus,
the claim 62 — o a.s. follows if we show that n™"*'Y?2 —  a.s. For any constant
K>,

P(n"'Y: < K) < P(Y, < K"2n""172)

= [1 — [A(K2n V21"
exp{—n[log ((n — 1)/2) log n + (%) log K]}
< exp{—n/K,log n}

IA

for large n and some K; > 0. Thus, n™"*'Y2 — o a.s. in view of the Borel Cantelli
lemma.

It is clear from the above example that at least some tail condition is needed
on F to ensure consistency of the bootstrap estimator of variance. The following
section shows that 62 = V*[&(m,’f — m,)] converges almost surely to (4f%(u))™!
under a very nonrestrictive moment assumption on the X/’s. In the above, V,
denotes variance over the cenditional law of m} given X, ..., X,,.

2. The main result. First, we state a lemma needed in proving the main
result. The lemma is known in the literature. A proof is included here for the
sake of completeness.

LEMMA 3. Let X4, ---, X, be iid such that E| X, |“ < o for some a > 0. Let
Y, < ... < Y, denote the ordered X;’s. Then, (| Y,| + | Y1|)/n** = 0 a.s.

PrROOF. E| X,|" < o implies that, for every ¢ > 0,
TP P X | > i) = 37 P(| X1 | > &i'/*) < oo,

So, in view of the Borel-Cantelli lemma, | X;| < i/* for all but finitely many
i’s, a.s. Hence, (| Y1| + | Y, |)/n** - 0 a.s.

We are now in a position to prove the main result, namely the strong
consistency of the bootstrap variance estimator under an extremely weak moment
condition.
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THEOREM 1. Let X,, ---, X, be iid with E| X, | < o for some a > 0.
Also, let the conditions of Lemma 1 hold. Then, ¢% = V*[\/ﬁ(mi — m,)] —as
(4%(w)) ™" as n — o, that is, the bootstrap variance estimator is strongly consistent.

PRrROOF. In view of Lemma 1, it suffices to prove the uniform integrability of
n(m} — m,)? (which implies uniform integrability of vn (m} — m,) as well). It
suffices for this to show that E, | Vn(m¥ — m,)|?** < » for some 6 > 0. Next,
denoting by P* the conditional probability law of m} given X3, - - -, X,,, it follows
that

E,|Vn(m}t — m,)|** = (1 + 8) f P (Vn|mk — m,| > t] dt.
0

Thus, it suffices to show that, for a constant ¢ >0, allt >1andaé’ >0,
(2.1) P, (Vn|m¥ — m,| > t) < ct™@*+")

for all large n, a.s.

In order to establish this, we argue separately in two different zones (I)
t € [1, c(a)(log n)"/?] and (II) [c(a)(log n)*/? ) where the requirement on the
constant c¢(a) is specified later.

{(Vn(m¥ — m,) > t}
(22) ={%+1/2n = F(m, + t/Vn)}
= {% + 1/2n — F,(m, + t/Yn) = F¥(m, + t/Vn) — F.(m, + t/vn))

where F} denotes the bootstrap empirical c.d.f. and F, is the usual empirical
c.d.f. based on the X/’s. Let us write

Y% + 1/(2n) — F.(m, + t/vn)
= [F(m,) — F(m, + t/Vn)]
+ [F(mn + t/Vn) = Fu(m, + t/vn) — F(m,) + F.(m,)]
+ [Y2 + 1/(2n) — F.(m,)]
=A,+ B, + C, (say).

Because of the assumed continuity of F in a neighborhood of pu, it follows
that | C,| =< 1/n for all large n, a.s. Using Lemma 1 of Bahadur (1966) and

the well-known fact that |m, — x| = O(n""*(log n)/?) a.s., we deduce that
|B.| = O(n"*log n) a.s. in the region t < c(a)(log n)/% Also, in this region
of t, it is clear from Taylor’'s expansion that A, = —(¢/ vn)F "(m,) +

o(n""*(log n)'/?) a.s. Combining all the above facts, and noting that t > 1, we
conclude that, for all large n,

(2.3) Vo — Fo(m, + t/Vn) < — et/Vn

for some ¢ > 0 and all ¢t € (1, c(a)(log n)'/?], a.s. Consequently, it follows from
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Markov’s inequality that, in zone (I) of ¢,

P,(Vn(m} = ma) > t) < (et)™E [Vn(Fk(m, + t/Vn) = Fo(m, + t/Vn))]*

< 3(et)" 4
For t > c(a)(log n)*?, using (2.2) and (2.3), for all large n a.s.,
P,(Nn(m¥ — m,) > t)
< P (¥n(m¥ — m,) > c(a)(log n)"?)
24) = P,(F¥(mn + c(a)(log n)"2n""2) — Fy(m, + c(a)(log n)"2n-"%)
< —ec(a)(log n)?n~12),

Choose c(a) = 1/a + %. Now it follows from Lemma 3.1 of Singh (1981)
with p = F,(m, + c(a)(log n)"?n™*?), B =1, Z = (1/a + %)(2 + 6)log n,
D = ec(a)(1 + e/2)*(log n)?n'? that the right-hand side of (2.4) is
O(n~1/«+1/2@+8)) Hence, for large n,

1/a+1/2

f ) t”‘sP*(\/ﬁ(m,": —m,) >t)dt =0() as.
¢(«)(logn)1/2

Finally, because of Lemma 3, P, ( Jn(m¥ — m,) > n'/2*«) = 0 a.s. for all large

n. Thus, we have proved (2.1) w1th «/—l m}¥ — m, | replaced by \/_(m,, - m,).

Similar arguments can be used to handle — vn(m* — m,). This completes the

proof of (2.1).

3. Some remarks. An examination of the proof of Theorem 1 suggests the
following “robustification” of the bootstrap to avoid the (admittedly nononerous)
moment condition. First, Winsorize the original sample, replacing Y; by Y/, for
all i < [nz], and by Y|,q-. for all i = [n(1 — 2)], for some z € (0, ¥2). Then,
perform the bootstrap on the modified sample. Examining the previous proof, we
find that 62 —. [4f%(r)]™?, even without the moment condition, since the only
use of the moment condition was to bound | Y| + | Y, | by n® for some 8 > 0
and this term is now replaced by | Y..;| + | Y(na-z;| which is trivially O(1) a.s.
An alternative to Winsorizing the original sample is trimming it. Draw the second
stage samples from Y.}, Yinz)+15 « + + Y[na-2) @ssigning each one equal probability
(= 1/[[n(1 = 2)] — [nz] + 1]) at each draw and define the estimator of the
variance as follows:

1
*2 _
In (1 - 22)?

Following the proof of Theorem 1, it is not hard to show that this ¢}? converges
to 1/(4f%(u)) a.s., without requiring any moment condition.

Needless to say, all the above discussions extend appropriately to any general
quantile without any further complication. In fact, with the help of the Kiefer
type representation of quantile processes, one can extend Theorem 1 and the
remarks of the previous paragraph to a general trimmed type L-statistic.

E.(m} — m,)>
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